Winning Tennis with Probability 0.3 and 0.7

  • Thread starter Thread starter WMDhamnekar
  • Start date Start date
  • Tags Tags
    Tennis
WMDhamnekar
MHB
Messages
376
Reaction score
28
Hi,

What is your probability of winning a game of tennis, starting from the even score Deuce (40-40), if your probability of winning each point is 0.3 and your opponent’s is 0.7?

1645684239650.png


My answer:
I think the sequence of independent trials are required to win a game of tennis starting from even score Deuce(40-40),each of which is a success with probability (0.3 × 0.3 =0.09) or a failure with probability (0.7 × 0.3 + 0.7 × 0.3 =0.42). Suppose, the independent trials to win a game of tennis are n. That means after (n-1) trials of failures, the nth trial is success.

$$ \displaystyle\sum_{n=0}^{\infty} 0.09 \cdot (0.42)^n =\lim_{n \to \infty}\frac{0.09\cdot ( 1 - 0.42^n)}{1- 0.42}= 0.15517 $$ = 15.51 %
 
Last edited:
Physics news on Phys.org
Have you worked out the states and the state transition probability matrix?
I see the states as
Deuce, Ad-In, Ad-Out, Game

with Game being an absorbing state.
 
Write out all the conditional probabilites P(W|X) where X = A, B, D. You will have a linear system of three unknowns and three equations, which can be solved by standard methods.

For example: If you are in state B, you must win the next point to have any chance of winning. If you lose the point you lose the game, so
P(W|B) = q P(W|D)
because if you do win the point (which you do with probability q), then you will be in state D and your probability of winning will be P(W|D).
 
There is a useful shortcut in considering two point played at a time. If the probability of winning a point is ##p##, then the probability of winning the game (##P##) satisfies:
$$P = p^2 + 2p(1-p)P$$Hence$$P = \frac{p^2}{2p^2 - 2p + 1}$$With ##p = 0.3##, this gives ##P \approx 0.155##.
 
  • Like
Likes DrClaude and Orodruin
PeroK said:
There is a useful shortcut in considering two point played at a time. If the probability of winning a point is ##p##, then the probability of winning the game (##P##) satisfies:
$$P = p^2 + 2p(1-p)P$$Hence$$P = \frac{p^2}{2p^2 - 2p + 1}$$With ##p = 0.3##, this gives ##P \approx 0.155##.
Other way of seeing this: Probability of winning in two points is ##p^2##. Probability of losing in two points is ##(1-p)^2 = 1-2p+p^2##. Probability of winning must therefore be
\[
\frac{p^2}{p^2 + (1-p)^2} = \frac{p^2}{2p(p-1) + 1}
\]
as otherwise we return to the same state.
 
  • Like
Likes DrClaude and PeroK
On the Metro to Sakura, Japan I was sitting in a section of 10 travelers. Only one was on a smart phone. I was amazed. In six weeks in Tokyo I have informally observed that usage is about 90%. If so the odds for this is one in 110,000,000. Indeed on the reverse direction ride home that day I was in a section of 14 riders with twelve on smart phone. Close.
So this question arises from an online course on Bayes Theorem and Total Probability. The question says that there are three prisoners A, B and C. The King decides to release two of them and sentence the remaining one. Supposed that you were A and so your chance of being released is ## \frac{1}{3} ## Suppose you know the guard well. You can ask him about who will be one of the released prisoners, except yourself, i.e. B and C. Let ## G_B = ## guard says B is released, and ## X_A = ##...

Similar threads

Replies
10
Views
2K
Replies
1
Views
1K
Replies
7
Views
2K
Replies
8
Views
2K
Replies
3
Views
1K
Replies
1
Views
2K
Replies
2
Views
2K
Back
Top